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ABS TRACT

The problem of accurately replicating the parameters which

define a given system for the purposes of implementing modern

control strategies is important. Using an Autoregressive-

Moving Average (ARN.A) representation for the unknown system,

a model is identified by processing input/output data to esti-

mate the coefficients associated with the ARMA equation. Iden-

tification of unknown system parameters using Kalman filtering

methods was accomplished by augmenting the state vector. In

this thesis the Kalman filter is formulated so that parameters

can be identified explicitly. We call this approach the

Adaptive Kalman Identifier (AKI).

It is shown that the Adaptive least mean square (LMS),

Adaptive Recursive LMS and Adaptive Lattice filters are special

suboptimal cases of the AKI. The convergence and modeling

properties are compared with those of the AKI by simulation

using various types of data.

With minor modifications, the AKI algorithm was used to

identify the linear and non-linear ARMA models of the phase

locked loop (PLL). A discrete PLL using a forward Euler inte-

gration scheme was used as a source of non-linear data. The

AKI technique appears to enable one to discern when a potential

non-linear system enters into its non-linear mode of operation.
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I. INTRODUCTION

The accomplishments in the area of microprocessor tech-

nology in the last decade have made a noticable impact in the

area of modern control. The desire to implement modern con-

trol theories taking advantage of these advancements, has

made it imperative that the engineer attempt to mathemat-

ically replicate the system he ultimately desires to control.

Efforts in this regard have, hence, generated a growing

interest in the area of system identification [Ref. 1,2,3,4].

By implication this thesis concerns itself with discrete/

digital signal processing.

A. BACKGROUND

System identification or modeling can be accomplished by

innovative application of existing techniques which were

generally considered filtering or state estimation methods

[Ref. 51. Previous research efforts have, for obvious reasons,

focused on linear modeling; however, there is a rising interest

in non-linear modeling methods [Ref. 6,7,8].

An attractive form for the representation of an unknown

system is the Autoregressive-Moving Average (ARMA) equation,

y(k) = [ aiu(k-i) - [ biy(k-i) (1.1)
i=0 i=l

which states that the present output, y(k), is a linear com-

bination of past outputs, y(k-i), and of past and present

13



inputs, u(k). Its attractiveness lies in its linear charac-

ter and easily implementable structure using microprocessor/

computer algorithms. Its relationship to the state space

representation of a linear system has already been established

[Ref. 9,101 making it germane to consider that a system is

identifiable by an equation of the form (1.1). The system

identification problem thus entails identifying the coeffi-

cients a. and b.

There are several methods for computing the coefficients,

a i and bi, however, it is not the intent of this brief intro-

duction to attempt to develop even the majority of them.

Nevertheless, it is practical to present a referenced history

of those methods encountered in this thesis.

Adaptive algorithms for the purpose of estimating the

coefficients of (1.1) have always been of interest. Widrow,

using a least means square error criterion and implementing

the method of steepest descent, developed an adaptive algorithm

which estimated the coefficients of the moving average process

associated with equation (1.1) [Ref. 111. That is, the moving

average model,

y(k) = a'u(k) +aiu(k-l) +a'u(k-2) + ... (1.2)

where,

a = a 0

a1 (a 1  a 0 bI )

14



a (a2 - a0b2) - b1 (aI - a0b1 )

was identified. The LMS theory has since been extended to

include block LMS filtering methods [Ref. 12,13,14] using

various search techniques [Ref. 15,4(Chapter 5)]. These

methods have enjoyed much popularity in the area of Linear

?ediction and digital speech processing [Ref. 16,17].

The shortcoming of representing equation (1.1) by its

equivalent moving average model (1.2) lies in the practical

aspect of its implementation. That is, the infinite series

represented by equation (1.2) must be truncated at some point

resulting in an approximation which may not adequately repre-

sent equation (1.1). Hence, efforts to adaptively estimate

the coefficients for both the autoregressive (bi ) and moving

average (ai ) processes continued [Ref. 18,19,20] with various

degrees of success. Feintuch's Adaptive Regressive LMS pro-

cedure (Ref. 181 is still a controversial issue [Ref. 19,20].

From yet a different direction, Anderson and Moore suggested

that the Kalman filtering algorithms can be used as a means
1

to identify the a. and bi coefficients of equation (1.1)
i i

[Ref. 21, pp. 50-52]. This thesis exploits this application.

1 Anderson and Moore in fact formulate the technique to
compute the coefficients ai,b i i = 1,2, ... p where
p = n+m.
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B. INVESTIGATIONS AND CONTRIBUTIONS

This thesis formulates an adaptive application of the Kal-

man filter to identify the coefficients of the general ARMA

equation (1.1). It is shown that the LMS adaptive filter

(Ref. 11] and the Adaptive Recursive 124S filter [Ref. 18]

are (1) special cases of the Adaptive ARMA Kalman identifier

and (2) sub-optimal with respect to the underlying least

means square (LMS) error criterion upon which the LMS adap-

tive filter, the adaptive recursive filter and the Kalman

filter are based. It is also demonstrated that the adaptive

Kalman identifier has excellent convergence properties.

By comparison, it is noted that the Kalman algorithm

accounts for measurement noise where the LMS algorithms do

not, a heretofore unapproached problem by LMS algorithms.

The results indicate that the suggested modification by

Griffiths (Ref. 22] of the convergence factor, ks, for the

LMS adaptive filter is justified.

The application of the Kalman filter algorithm is ex-

tended to identification of the coefficients associated with

a special case of the generalized non-linear ARMA model [Ref.

8]. The results of the non-linear simulations suggest a tech-

nique for determining when a potential non-linear system 3

enters its non-linear operating regime. Such a technique can

prove valuable when on-line performance evaluation of a known

non-linear system is required.

Lastly, the connection between the Kalman filter algorithm

and the lattice filter algorithm [Ref. 6] is made. An example

161'L



fI
which demonstrates and compares the performance of both

algorithms is given.

C. ORGANIZATION

Chapter II presents and exploits the Kalman filter equa-

tions emphasizing its connections with the Yule-Walker and

the discrete Weiner-Hopf equations. The theory is further

developed to investigate the general ARMA case. Chapter III

pursues the theoretical comparisons between the discrete

Weiner-Hopf equation upon which the adaptive LMS filter is

based and the MA form of the Kalman filter. The theoretical

comparison between the Adaptive Recursive LMS filter and the

general ARMA form of the Kalman filter is made in Chapter IV.

The software methods by which linear and non-linear synthetic

data is generated are discussed in Chapter V. A short user's

description of the data processing programs and the options

provided is given in Chapter VI. A non-linear application

for the identification of the parameters of a non-linear plant

is presented in Chapter VII followed by a discussion and pre-

sentation of the results in Chapter VIII.
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II. FORMULATION OF THE PROBLFM

Identifying the coefficients of the Autoregressive-

Moving Average (ARMA) equation,

y(k) + blY(k-1) + ... + bnY(k-n) = a 0 u(k) + alu(k-1)

+ ... + a u(k-m) (2.1a)m

m n
y(k) = [ aiu(k-i) - [ biy(k-i) (2.1b)

i=0 i=l

can be formulated as an adaptive Kalman identification problem.

That is, instead of using the well known Kalman Filter equa-

tions [Ref. 23,24] to recursively estimate the states of a

system, one can utilize the Kalman filter equations to adap-

tively estimate the coefficients of either an Autoregressive

(AR), Moving Average (MA), or Autoregressive-Moving Average

(ARMA) process by proper definition of the quantities involved.

We call this the Adaptive Kalman Identifier for obvious

reasons.

A- THE DETERMINISTIC CASE
Consider for the moment that the ai and bi are constant.

Then by collecting a sufficient number of measurements of the

input u(k) and the output y(k), one can readily solve a set

of linear equations for the ai and bi coefficients. The

"sufficient number" that is needed is n+m+l which define the

18



n+m+l linear equations which solve the n+m+l unknown coeffi-

cients. The matrix equation to be solved takes the form:

y(0) u(0) 0 ... 0 0 . . . 0 a0

y(1) u(1) u(0) y(0) 0 aI 1

y(m) u(m) u(m-1) u(0) y(m-l) y(m-2) y(0) 0 am

y (m+l) u (m+l) u (i) y (m) y (m-1) y (1) 0 b1

b2
2i

y (m+n) u(m+n) ... u(m) y(n-1) y(n-2) y(O)
J ,. J

(2.2)

T --- (2.3)

It is interesting to note that the (n+m+l) x (n+m+l) matrix,

T, is block symmetric. The solution to (2.3) is readily

apparent, namely,

T-lY (2.4)

where T - is the inverse matrix of T. Since we have assumed

that the elements of T are perfect noiseless measurements,

and that we somehow know a-priori the number of unknown

19



coefficients, then T is of full rank, namely rank (T) =

n+m+l, and the inverse of T exists.

B. THE NONDETERMINISTIC CASE

Rarely can the coefficients be modeled so ideally. A

more prudent and realistic model admits that the ARMA equa-

tion coefficients are subject to random perturbations. Further,

it can be said that in general measurement devices introduce

noise into the measurement data. Hence, the measurement

model should reflect this fact. Developing the Adaptive Kalman

Identifier along the same lines as [Ref. 21] we let,

a. (k+l) = a. (k) + w. (k) i 0,1,2, ... m (2.5a)
1 1 .

bj (k+l) = bj (k) + wj (k) j = 1,2, ... n (2.5b)

where the {wi (k),w k)} are samples from a zero mean, white,

gaussian random process. Additionally, we assume that the

noise sources are uncorrelated,

E[w (k)w (k)] = 0 for r # s (2.6a)
ar a

E[Wb (k)Wb (k)] = 0 for r # s (2.6b)
br bs

E[wa (k)w b(k)] = 0 for all r,s (2.6c)
r s

Similarly, allowing for noisy measurement devices, the

measurement equation (2.1b), is modelled as,

m n
y(k) I [ aiu(k-i) - biy(k-i) + v(k) (2.7)

i=0 i-l

20
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where the {v(k)} are samples from a zero mean, white, gaussian

random process. It is also assumed that,

E(wi(k) v(k)] = 0 for all i (2.8a)

E[wj (k) v(k)] = 0 for all j (2.8b)

That is, it is assumed that the noise perturbations associated

with one coefficient are independent of the noise perturba-

tions associated with any other coefficient, and that the

measurement noise and the coefficient perturbations are

independent.

At this point it is ncessary to use judgment and experi-

ence and utilize all the information known about the physical

system which equation (2.7) represents to assign variances for

the random processes {wi (k)}, {w.(k)} and {v(k)}. Let

Fw(k)l1
Q =E [wi(k) w (k)] (2.9a)

w(K)

[Q 01[ Q 2
1 (2.9b)

0 Q2

where, Q diag (a 2 )' Q2 = diag (aw) and,
1 2

R = E[v(k) v(k)] (2.9c)

and E[x] is the expected or average value of x.
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Instead of using x's denoting the commonly used notation

for state variables, we retain the flavor of the problem by

using the ai 's and b. 's as the "states" of the Adaptive Kalman

Identifier. It is hoped that a more meaningful understanding

of the Adaptive Kalman Identifier may thus be gained. There-

fore, define the state vector,

a0 (k)

al(k)

am(k) a--

--- (2 .1 0)

bl(k)
b 2 (k)

b (k)

n

Combining equations (2.5) and (2.10), we have the discrete,

first order Gauss-Markov process [Ref. 3],

a(k+l) -a(k)-
---- [+.~ +w(k) (2.11)

[bk+l) 
bk

where,

(k)

w(k) = [;j(2.12)
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Note that w(k) is an n+m+l vector whose elements are a con-

catenation of the noise sequences associated with the ai and

b. To complete the Adaptive Kalman Identifier formulation

we define the measurement vector,

H(k) = [u(k) u(k-1) ... u(k-m) -y(k-1) ... -y(k-n)] (2.13)

and its associated measurement equation,

a(k)

y(k) =H(k) +- +v(k). (2.14)

Then the solution to the Adaptive Kalman Identifier problem

[Ref. 21] is,

Fa(k+ljk) kkl
- - [I-K(k)H(k)] [-klk- + K(k)y(k) (

b(k+llk) b)kk-l)
T T7

K(k) = P(klk(l) H T(k) [H(k) P(kjk-l) HT (k) +R] - 1  (2.15b)

P(k+llk) = P(klk-l) - K(k)H(k)P(klk-1) + Q. (2.15c)

Equations (2.15) are initialized by assuming an initial value

for the coefficients (2.10) and assigning to our assumption

a measure of our confidence in the initial guess. That is,

we pick the values,

a(01-1)1----- and P(01-l) (2.16)

23



where P(01-1) is defined as the error covariance of the

coefficients,

1 LLk) a(kik)] a(k)
P(klk-l) E ' ' ---- 3

- - (2.17)

(k kJ

for k = 0. Equation (2.15b) is generally referred to as the

Kalman gain. Two special cases are of interest: case (1);

a. = 0 for all i, and case (2); b. = 0 for all i.

1. Autoregressive Form (a. = 0)

For case 1, equation (2.7) takes the form,

n
y(k) = - [ biY(k-i) + v(k). (2.18)

This is a recursive equation stating that the present output

is a linear combination of past outputs corrupted with addi-

tive gaussian noise, v(k). Equation (2.18) is more formally

recognized as an autoregressive prcoess of order n [Ref. 25,

261. Writing the Kalman solution for the coefficients of the

AR process,

b(k+ljk) [I -K(k)K(k)]b(klk-1) + K(k)y(k) (2.19a)

K(k) = P(kjk-l) H T(k) [H(k)P(klk-1) H T(k) +R] -  (2.19b)
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P(k+lIk) = P(klk-l) - K(k)H(k)P(k1k-i) + Q. (2.19c)

Alternate forms of the Kalman equations given by Maybeck

[Ref. 271 are,

b(k+llk) = P(klk-i) P(klk-l)- I b(kjk-l)

+ P(k+llk) HT(k) Rly(k) (2.20a)

P(k+lik) = (P(klk-1)) - +H (k) R -  H(k)- I . (2.20b)

We can model the fact that we have no a-priori knowledge

about the initial values of the coefficients by letting,

[p ( 1 )z] -i 0. (2.21)

Further, if we remain ignorant and totally doubt our previous

estimate, then P(kik-l) is modeled as,

(P(klk-l)] 0. (2.22)

Equations (2.20) reduce to,

'S-1 T -1 -1
b(k+llk) = [H(k) R H (k)] H(k) R Y(k), (2.23)

the weighted least squares estimate, previously encountered

by Swerling [Ref. 28,29,30], of the coefficients, b. Carry-

ing the analysis further and letting R = 1, we have the

Penrose pseudo-inverse solution [Ref. 31,32],

'S T -1 (.4
b(k+llk) = [H(k) H (k)] H(k)y(k) (2.24)
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Swerling [Ref. 28] has shown that if the weighting matrix

in (2.23) is not the inverse of the covariance matrix of

the measurement errors, then the accuracy of the estimated

coefficients (2.24) will be degraded.

The aforementioned notwithstanding, we press further

into the analysis of equation (2.24). The product H(k)H T(k)

can be written as,

y(k-i)

y(k-2)

TH(k)H (k) . [y(k-l) y(k-2) ... y(k-n)] (2.25)

y(k-n)

2y (k-i) y (k-l)y (k-2) ... y(k-l)y(k-n)

y(k-2) y(k-1) y2 (k-2)

H (k)HT (k) = . . (2.26)

y (k-n)y (k-l) ... ... y (k-n) y (k-n)

As we let k the expected value of (2.26) becomes the

autocorrelation matrix,

Eflim H(k) HT (k)} = R (k) (2.27)

where,
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Ryy (0) R (1) ... R (n)

Ryy (- 1) Ryy (0)

R (k) = . . (2.28)

R (-n) ... . .. R (0)
Lyy yy (

Similarly, the product H(k)y(k) as k - becomes

Ryy (-1)

Ryy (-2)

r (k) (2.29)
yy

Ryy (-n)

The steady state solution for the estimate of the coeffi-

cients b(k+llk) is,

b (k+llk) = R -l(k)r (k) . (2.30)-ss yy yy

Equation (2.30) is one of the starting points from which

Perry [Ref. 6] develops his Lattice modeling algorithms.

Equation (2.30) can also be recognized as the solution to

the Yule-Walker or Normal equations (Ref. 26].

2. Moving Average Form (bi = 0)

Referring once again to equation (2.7) and setting

the coefficients bi = 0 for all i we have case (2),

m
y(k) = I u(k-i) + v(k) (2.31)

i=0
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Since v(k) is by definition noise associated with the

measurement, we can combine y(k) and v(k) such that,

m
z(k) = y(k) - v(k) = [ a.u(k-i). (2.32)

i=O

Equation (2.32) simply states that the present measurement

is a linear combination of past and present inputs or by

definition, a Moving Average (MA) process [Ref. 25,33]. The

Adaptive Kalman Identifier estimate for the coefficients of

the MA process is as before,

a(k+lIk) = [I-K(k)H(k)] a(k+lIk) + K(k)z(k) (2.33a)

K(k) = P(klk-l) HT (k) [H(k)P(k lk-l) HT (k) +-I (2.33b)

P(k+llk) = P(klk-l) -K(k)H(k)P(kjk-l) +Q. (2.33c)

Using the alternate forms of the above equations we arrive

at,

a(k+l k) [P(k+llk)[P(klk-1)] ]a(klk-1)

+ [P(k+llk) HT (k) R-l]z(k) (2.34a)

P(k+llk) = [[P(klk-l)] - I +HT(k) R -1  H(k)]- I . (2.34b)

Arguing as we did for the autoregressive case, no a-priori

knowledge about the initial values of the moving average

coefficients, implies that,

28



[P(01-l)-i z 0. (2.35)

And even if after we processed one measurement we still

admitted no knowledge as to the accuracy of the previous

estimate, we imply that,

(P(klk-l) ]-i z 0. (2.36)

Substituting these implications into equations (2.34) our

estimate becomes,

-1 T -l-a(k+lik) = [H(k) R H (k)]I H(k) R z(k) (2.37)

the by now familiar weighted least squares estimate [Ref. 28,

29,30]. If once again we allow R-  to be unity, let k tend

toward infinity and take the expectation of equation (2.37),

one arrives at the discrete form of the Wiener-Hopf equation

(Ref. 111, namely

* -l k)r ()( 3 )
a(k+lIk) = Ruu (k) r uz(k) (2.38)

where it can easily be shown that,

R uu(0) R uu(-I) ... R uu(-m)

Ruu (-1) R (0) . .. Ruu (1-m)

R (k) . . (2.39)uu

Ruu (-M) •.. R (0)

and,
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Ruy (0)

Ruy (- 1)

R (k) = . (2.40)uy

R (-m)
uy

Equation (2.38) provided another point of departure from

which Perry [Ref. 6] develops the MA Lattice modeling algorithms.

Appendix A develops the Wiener-Hopf equation otherwise known

as the all-zero model from yet another approach.

The all-zero model is fundamental to Widrow least

mean square (LMS) adaptive filters [Ref. 11] and linear pre-

diction theory [Ref. 16].

3. Autoregressive-Moving Average Form

Returning to the alternate form (equations 2.20) of

the Kalman Filter equations (2.19) the development of the

Autoregressive Moving Average (ARMA) Adaptive Kalman Iden-

tifier follows. The estimate for the ai and bi coefficients

is,

(k+lk) = [P(klIk) [P(klk-)] kk-)

bk~llk) [b(klk-

+ [P(k+llk) HT(k) R- ly(k) (2.41a)

-1 T -1 -1
P(k+lik) = [(P(klk-1))- +H (k) R-  H(k)] -  . (2.41b)
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Progressing in the same manner as in the previous two cases,

we assume,

(P(01-1)1-1  z 0 (2.42a)

[P(klk- )] -  z 0 . (2.42b)

The estimate then becomes,

k+ljk)

Taking equation (2.43) a step further by letting R71 be

unity, letting k approach infinity and taking the expectation

we have,

R(k+l k nu (k) -Ruy (k-i) R(k)

L- .------- (2.44)

(k+l Ik) -RT (k-i) R (k) (k)6. k- 1 yy y

Note that the time varying measurement vector, H(k), is of

the form

H(k) [u(k) u(k-l) ... u(n-m) -y(k-l) -y(k-2) ...- y (k-n)]

(2.45)

Shown in detail, equation (2.44) has the characteristic form

(equation 2.46, next page). It is the Toeplitz and symmetric

nature of equation (2.46) that is exploited by the Levinson

(Ref. 34] and Lattice [Ref. 35] algorithms.
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The Adaptive Kalman ARMVA modeling technique can be

best visualized by a block diagram. Referring to Figure 2.1,

the unknown system is excited by a white, zero mean, gaussian

noise sequence of sample values from a random process. The

input and its associated output are then passed through M

and N delays respectively in serial form. The parallel inputs

(M+l) and the outputs (N) are concatenated to form the

measurement vector H(k) which is represented by equation

(2.13). The inputs N and M are selected a-priori as the

model orders for the Autoregressive and Moving Average pro-

cesses one desires to identify. It can be easily seen that

the remainder of the figure simply implements equation (2.15a).

The outputs of the Adaptive Kalman Identifier are an estimate

of the coefficients,

_(klk)

a(klk

and a one step prediction, y(klk).

C. OBSERVATIONS

In this section it has been shown that a direct connection

can be established between the Adaptive Kalman Identifier and

the Yule-Walker equations associated with an AR process.

Secondly, the steady state Adaptive Kalman Identifier closely

resembles the discrete Weiner-Hopf equation associated with

the MA process when the measurement matrix, H(k), is of the

form,
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H(k) = tu(k) u(k-1) u(k-2) ... u(k-m)]

And, thirdly under the same assumptions as in the previous

two cases, the Adaptive Kalman ARMA Identifier is similar to

the form Perry [Ref. 61 exploits using Lattice modeling.
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III. COMPARISON BETWEEN THE ADAPTIVE MA KALMAN
IDENTIFIER AND THE WIDROW LMS ADAPTIVE FILTER

A. PRELIMINARIES

It is instructive to investigate the similarities between

the Adaptive Kalman Identifier and the Widrow LMS Adaptive

Filter when the concepts are applied to system identifica-

tion. Basically, the LMS algorithm implementation of system

identification considers a block diagram as is shown in

Figure 3.1. The output, y(k), of the Adaptive filter is simply

a weighted linear combination of the past and present known

inputs. The same input is fed into both the unknown system

to be identified and the adaptive filter. The output of the

unknown system is designated the desired response, d(k), from

which an error signal, e (k), is derived. The error signal,

F (k), provides the criterion through which the weights, wi ,

are adjusted such that the error, e(k+l), is driven toward

its minimum. A more detailed analysis of the operation of

the LMS algorithm can be found in Ref. 11.

The weights w. are adjusted from time step to time

step in the following manner,

w(k+l) = w(k) - 2k s(k) X(k) (3.1)

where we define the following quantities,
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Wl(k)

w (k)

w (k) . ,(3.2)

wm(k)J

mthe weight vector at time step k,

u(k)

u(k-1)

X(k) (3.3)

u (k-m)

the input signal vector at time step k,

£(k) = d(k) - y(k) (3.4)

y(k) w wT(k) X(k) (3.5)

the error, e(k), and the output, y(k), at time step k, and,

ks, a scalar constant controlling the rate of convergence and

the stability of the adaptive filter.

B. THE COMPARISON

Substituting (3.4) and (3.5) into (3.1) gives,

w(k+l) = w(k) -2k X(k)[d(k) -w T(k)X(k)l. (3.6)
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Recalling the MA form of the Adaptive Kalman Identifier,

equation (2.33a), rewritten here for convenience as

a(k+llk) a(klk-l) +K(k) [z(k) -H(k) a(klk-1)], (3.7)

one can make the following associations:

Aa(k+ilk) i (k+l) (3.8a)

Aa(kik-l) w (k) (3.8b)

z(k) d d(k) (3.8c)

H T(k) ( X(k) (3.8d)

K(k) -2k s  X(j) (3.8e)

Recall that for the MA form of the AKI, the measurement

vector H(k) represents a vector of past and present inputs.

Namely,

H(k) = (u(k) u(k-l) ... u(k-m)] . (3.9)

Therefore the associations (3.8a)-(3.8d) are straightforward.

However, it is not so clear as to what is meant by the

association (3.8e). Digressing a moment to present an equi-

valent expression [Ref. 27] for the Kalman gain, K(k),

K(k) = P(klk) HT(k) R- 1 (3.10)

and substituting (3.10) into the association (3.8e) and enter-

taining the conjecture that the quantities are equivalent
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under certain conditions, we have:

P(k(k) HT(k) R-  = -2ks X(k) . (3.11)

The conditions alluded to are (1) that the Adaptive Kalman

Identifier is in steady state and (2) that the statistics of

the input forcing function are stationary. Denoting the steady

state error covariance, P(klk), as P., equation (3.11) can

be solved for k,

ksI = R p P (3.12)

Invoking the entire Kalman gain history in its more popular

form of equation (2.33b) and equating it to the Widrow gain

(3.8e), we instead arrive at,

-2ksX(k) = P(klk-l) HT(k) [H(k) P(kjk-l) HT(k) +RI 1

(3.13a)

H T(k) = X(k) (3.13b)

Solving for the convergence factor, ks, we obtain,

-2k sX(k)X T(k) - P(kjk-l) X(k) (XT(k)P(klk-l)X(k) +R]-IxT(k)

-2k sI = P(klk-l)X(k) [XT(k)P(klk-l)X(k) +R]-xT (k)TX(k)x T(k)]-l.

But [XT(k)P(kik-l)X(k) +R] -I is a scalar. Therefore,

P (k 1k-l)
-2k I = (3.14)

xT(k) P(k k-l) X(k) + R

40



Griffiths [Ref. 22] suggests that the convergence factor k S

which he denotes as t(n), should be chosen such that,

p(n) - (3.15)
L a2 (n)

x

where 0 < a < 1 is a normalized adaptive stepsize parameter

"2and the term ^ (n) is an estimate of the input power level

which may be computed using a geometrically-weighted average

for an L weight adaptive filter,

"2 (n" ( 2 x2
a( - 2 (n-l) + x (n) . (3.16)

Comparing equation (3.14) and (3.15), one observes that if

P(k k-l) is equal to the identity matrix then we obtain a

term proportional to the input power. Further if measurement

noise is considered negligible, R - 0.0, then 3.14 and 3.15

are essentially equivalent. The salient point to make, however,

is that the choice of the convergence constant, ks, in the

LMS algorithm provides no clue as to how to deal with measure-

ment noise whereas the Adaptive MA Kalman Identifier explicitly

incorporates measurement error into its algorithm.

C. OBSERVATIONS

It has been known that the LMS algorithm was suboptimal

since the actual gradient of equation (3.1) is replaced by

the approximation, 2e(k) x(k), [Ref. 24]. However, the degree

of suboptimality is difficult to quantify. In previous

linear prediction research no mention was made regarding the
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role of measurement noise. Equation (3.14) gives us some

insight into wiser selections of the rate of convergence con-

stant, ks, since it takes into account the effects of measure-

ment noise. Further, it appears that the LMS adaptive filter

is a special case of the Adaptive MA Kalman Identifier.

*1

I
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IV. COMPARISON BETWEEN THE ADAPTIVE ARMA KALMAN IDENTIFIER
AND THE ADAPTIVE RECURSIVE LIS FILTER

This chapter endeavors to investigate the similarities and

differences between the Adaptive ARMA Kalman Identifier and

the Adaptive Recursive LMS Filter [Ref. 18]. LMS filters

[Ref. 11] have enjoyed much popularity in the recent past due

to their ease of implementation, simple unimodal algorithm,

robustness and ability to "adapt" to the unknown statistics

of the signal environment. Being transversal in nature, they

have a finite impulse response being able to produce only

zeros in the input/output transfer function. One may, how-

ever, decide to model the transfer function,

1
H1 (z) -. 9 (4.1)

1 - .9z

using a transversal filter, only to realize that a large

number of delays are required in order to arrive at an

adequate approximation. The germane point which is being

made is that one weighted feedback tap can realize an infinite

string of feed-forward coefficients. Moreover, it is very

desirous to adjust the feedback weights adaptively in some

optimal fashion to the statistics of the signal environment.

A. PRELIMINARIES

The approach taken by Feintuch [Ref. 18] is patterned

after the analysis first presented by Widrow (Ref. 11]. A

summary of Feintuch's derivation will be presented here with

emphasis on its application to ARMA modeling.
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Recall the general ARMA equation (2.1b),

m n
y(k) = I a a u(k-i) + I biY (k-i) (4.2a)

i=O i=l

which can be rewritten in vector notation,

y(k) = aTu + b T (4.2b)

where,

T = [a a a (4.3a)

bT bb 2 ... b[ b (4.3b)

T
y = [y(k-l)y(k-2) ... y(k-n)] (4.3c)

T
u = [u(k) u(k-l) ... u(k-m)] (4.3d)

Given that (4.2) is the assumed mathematical description of

the unknown system where u and y, the input and output data

sequences, are known, then by solving (4.2) for a and b,

identification of the unknown system can be made. The LMS

algorithms, in general, employ a "desired" signal d(k) with

which to "train" the adaptive filter. If the desired signal

was assumed to be the response of some unknown system to a

known input signal, then the algorithm presented by Feintuch

[Ref. 181 can be used as a means by which to identify the

system parameters.

The first step in the Recursive LMS derivation is to form

the error between the desired signal, d(k), and the output
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of the filter, y(k),

e(k) = d(k) - y(k) = d(k) - aTu - bTy (4.4)

Forming the square of (4.4) and taking the expectation,

we have the mean square error representation of the filter,

E{e 2 (k)} = E{d 2(k)} + a T R a + b T R b ...-- uu- - yy-

-2a T Rdu- 2b T Rdy + 2a T Ruyb (4.5)

where,

T

R (k) = E{u(k) uT(k) } (4.6a)
uu

R (k-i) = E{y(k-l) yT (k-l)} (4.6b)yy

Rdu(k) = E~d(k) u(k)} (4.6c)

R dy(k) = E{d(k) y(k)} (4.6d)Fdy

R (k-i) = E{u(k-l) y(k-l)} . (4.6e)uy

It is assumed that the statistics (4.6) are constants allowing

the gradient of (4.5) to be taken with respect to the ai and

b. This assumption does not stretch the theory since in

practice one uses an input test signal with stationary char-

acteristics and if the unknown system's output process is

not stationary, then no identification of the system parameters

can be made. The respective gradients are,
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a_[E {e2(k)}] = 2 Ruu(k)a -2Rdu(k) + 2Ru (k)b (4.7a)

a-[Ee 2(k)}1 = 2R (k)b -2Rdy(k) +2R Tuy(k)a . (4.7b)
_ ~yy - d

Since the second order statistics are assumed to be known,

equations (4.7) can be solved for a and b by setting the

gradients equal to zero. In matrix partitioned form we have,

RUU ( k )  Ru (k) a Rdu(k)

----- =-------- (4.8)

At this point we digress momentarily to mention that Johnson

and Larimore [Ref. 191 and Widrow and McCool [Ref. 201 agree

with Feintuch's derivation. The following steps, however,

are controversial [Ref. 19,201.

Feintuch continues and states that in general, the statis-

tics involved in (4.8) are not available a-priori. One method

of estimating the statistics is to make the filter adaptive

in an iterative fashion using the method of steepest descent.

The method of steepest descent employs an algorithm of the

form,

3 2
a(k+l) = a(k) + k 2-[E{e (k)}] (4.9a)

a a3a

b(k+l) = b(k) + k i-EjE{e 2 (k)}]. (4.9b)
b a

The gradient involved in (4.9) can be approximated using the

techniques outlined in [Ref. 111. The iterative LMS algorithm
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for estimating the coefficients a and b is,

a(k+l) = a(k) - 2k ae(k) u(k) (4.10a)

b(k+l) = b(k) - 2kbe (k) y(k). (4.10b)

Figure 4.1 is a block diagram implementation of the Adaptive

Recursive LMS Filter algorithm as applied to system identifi-

cation. The input signal, u(k), to both the unknown system

and the adaptive filter is a zero mean, white gaussian noise

sequence of samples from a random process. The output of

the unknown system is d(k) which is used as the training

signal for the filter. The output of the adaptive filter,

y(k), is compared with the desired signal, d(k), from which

an error signal is derived. The error signal, e(k), is then

used in the LMS algorithm, equation (4.10), to iteratively

adjust the a and b coefficients. Theoretically, when the

coefficients of the zeros-producing adaptive filter and the

poles-producing adaptive filter correspond exactly with those

of the unknown system, the error sequence should be zero and

the unknown system is modeled by the Adaptive Recursive LMS

Filter. The convergence constants, ka and kb, are chosen

a-priori as are the initial values, a(0) and b(0), for the

coefficients.

B. THE COMPARISON

One can begin the comparison between the Adaptive Kalman

Identifier and the Adaptive Recursive LMS filter by noting
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the similarities between the equations (2.43) and (4.8),

repeated here for convenience,

(k+l1k) R (k) I -R (k-1) R (k)

uu I uy uy-------- ---------- (2.43a)
T

JIk~ IL)R (k-i) IR (k) LR (k)

A =B C 1  (2.43b)

R u (k) I R (k-) a Rdu(k)

------ (4 .8a)
RIu(k-1) R (k) Ryy ( R d(k)

I(k) 1 R (k)

--- -- -- = ii ~l - ---d --k (4.8b)
LJ~ I J Ld

A2  = B2 C2  (4.8c)

The upper left partitions of B and B2 are obviously identi-

cal, in that the AKI and the Adaptive Recursive LMS both

implement instantaneous estimates of the input covariance

functions, Ruu (k). The lower right partitions of B and B2

are similar with one subtle difference. Both are instantaneous

covariance functions; however, B1 employs the covariance,

R (k), of the actual data whereas B2 uses, in fact, previ-
yy2

ous filter estimates to compute the output covariance, R yy(k),

more properly denoted by R'-(k). The negative sign of the
y

upper right and lower left partitions in Bi, in comparison

with B2, is a result of the initial definition for the recursive
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weights, b. That is, the transfer function for the general

ARMA equation can be written as,

m m -i
a 0 + i a z

HAM (z) - m (4.9a)

1- b.z_i=l

or,

m -i

a 0 + aiz

H'ARMA(z) n

1 + i b.zi=l 1

The second and more important observation is that cross-

correlations employed by equation (4.8b) use the instantane-

ous values for the past estimates of the outputs while (2.43a)

uses the actual past values for y(k). Similarly, comparing

C1 with C2, one finds that the lower partition of C2 uses the

cross-correlation between the desired signal and the past

estimates of the adaptive recursive LMS filter.

Equation (4.8a) can convey the above information more

clearly if it is instead written as,
-1

-R k-l) R (kuu uy
S4--------------(4.10)

b -.1)1 % "(k) R ^ (k)
The convergence factors, ka and kb " can be compared to

the steady state Adaptive Kalman Identifier gains by making
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the identical analogies (3.8) as was done in the previous

chapter. One also observes that since the output data that

is processed by the Adaptive Recursive LMS filter are in

actuality filter estimates, a more correct version of Feintuch's

original algorithm (4.10) is written as,

a(k+l) = a(k) - 2ka e(k) u(k) (4.11a)

b(k+l) = b(k) - 2kb e(k) y(k) . (4.11b)

In agumented form, equation (4.11) is,[a(k+l [a(k) 1 2k a u(k)1
-. ....- [d(k) -a(k) u(k)- b(k) y(k)I

S(k+l b(k)J [2kb y(k)

Fa(k+l) 1 a(k)' 1 2k aTJ (k) Fra(k)'
------ d(k) -[u(k) .(k)J ----

Lbk+li b(k) L2kb y(k) Lb(k)Jj

(4.12)

Recalling equation (2.15a) in a slightly different form we

have,

[~~k [a(kik-1 aF k11
...... . ... + K(k) (k) -H(k) ---- -

Lb(k+lk) [(klk-) [b(kk-l)J

(4.13)

It is a simple matter to explore the similarities between

(4.12) and (4.13) and make the following associations,
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AKI Adaptive Recursive LMS

a(k lk) a(k)
- ------ < -- > -- - -(4 .1 4 a )

bklk-l) blkl)

z(k) (> d(k) (4.14c)

H(k) = [u(k) (-> (u(k) y(k)] (4.14d)

u (k-m) y(k-1)

... y(k-n)]

K(k) 2 ~)(4.14e)

2kb (k)j

The associations (4.14d) and (4.14e) are the major differences

between the AKI and the Adaptive Recursive LMS. It has been

shown that the mean square error surface employing not only

estimated feed forward coefficients but also estimated feed-

back (recursive) coefficients is in general multimodal [Ref.

361. Hence, the Adaptive Recursive LMS algorithm does not

minimize the mean square error [Ref. 19,20], and in general

the gradient algorithm in this case does not seek the global

minimum.
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C. OBSERVATIONS

The complex nature of estimating recursive coefficients

is yet a formidable problem [Ref. 19,20]. It seems that

Feintuch's algorithm is successful due to the a-priori knowledge

of the minimal order generating the desired signal. This

knowledge is used in setting the order of the adaptive

recursive filter.
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V. SYNTHETIC DATA GENERATING PLANTS

The Adaptive ARMA Kalman Identifier was tested using

computer derived data from several models. The input/output

data was collected by driving a known plant with a zero mean,

unit variance, white gaussian noise sequence of samples.

The AKI algorithm was repeatedly tested using data from

progressively more complex models.

A. AUTOREGRESSIVE-MOVING AVERAGE DATA

Autoregressive-Moving Average (ARMA) data was generated

using an equation of the form,

y(k) bly(k-l) + b2Y(k-2) + ... + bnY(k-n)

+ a u(k) + ... + amu(k-m) (5.1)

Taking the Z-transform of (5.1) we have,

Y(z) = b1 Z-iY(z) + b2z-2Y(z) + ... + b nz-nY(z)

+ a 0 U(z) + ... + amz-mu(z) (5.2)

where Y(z) (U(z)) represents the Z-transform of the output

(input) and z Y(z)(z U(z)) represents the Z-transform

of the output (input) delayed nO time steps. Equation (5.1)

has already been defined as the general form of the ARMA

process provided that the sequence u(k-i) i = 0,1,... comes

from a gaussian random process [Ref. 25]. The ratio,
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Y(z) a0 +alz + "' amz
HU(z) - -n (5.3)

1 -bl 1 - ... bn z

can then be readily recognized as the general transfer func-

tion [Ref. 37] of a digital plant. That is, the u(k) is the

observed input and the y(k) is the perfectly measured output.

Consider that the measurements of the output include some ran-

dom error, v(k), due to the inaccuracy of the measuring instru-

ments, then the resulting situation is as depicted in Figure

5.1. A practical, judicious and reasonable description of

the measurement error is that this be a stochastic process

whose distribution is zero mean gaussian. The noisy measure-

ment, z(k), is then the output, y(k), plus the measurement

error, v(k).

There are three cases of interest: Case 1: b. = 0 for
I

all i; Case 2: a. 0, i = 1,2,....,m; Case 3: a. # 0,1 1

b. # 0 for all i.
1. Moving Average Data (Case 1)

Case one is readily recognized as the all zero plant

which produces moving average data. A simple second order

plant was defined where a0 = 1.0, a1 
= 2.0 and a2 = 3.0. The

gaussian noise sequences, u(k) and v(k), were obtained using

the general purpose IMSL subroutine, GGNMIL, provided by the

computer center at the Naval Postgraduate School.

2. Autoregressive Data (Case 2)

Case two results in the all pole plant producing auto-

regressive data. The coefficients were selected such that the
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plant of Figure 5.1 produced stable data. In precise terms,

the poles of the function,

1
H(z) = 26 -l 9-2 1-3 (5.4)

l+ 2 6 z +2 _ Z 24

were located completely within the unit circle in the Z-plane

ensuring a stable plant [Ref. 37,381. The noise sequences

were obtained as before.

v (k)

u(k) ao + i a i z - 1

H(z) i=l

1- Z b~z1

Figure 5.1. ARMA Digital Plant

3. Autoregressive-Moving Average Data (Case 3)

Case three follows from a logical combination of the

two previous cases. That is, the transfer function, H(z), now

has both zeros and poles. In order to compare with previous

work done in the area of system identification [Ref. 6], one

of Perry's models (Ref. 61 was used. Namely, the transfer

function H(z) used for this case was,

I H(z) = 1 +l.4z - + .98z - 2  (5.z)
1 -l.14z -1 +1.4549z -2  .88490z 3 +.40745z
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The input, u(k), was obtained as in the previous two cases

using the IMSL subroutine GGNML set to unit variance and zero

mean. The output measurement noise sequence, however, was

set to a variance of .0001. The basic software, program ARMA,

which generated the different data is included as Appendix B.

Basically, the coefficients Al-Al0 change the character of the

general ARMA equation (5.1) which can be selected to produce

the desired plant data. The input/output data is then written

onto a disk file for subsequent analysis.

In order to compare some of the findings in this the-

sis with the results previously obtained by Feintuch [Ref. 18],

the transfer function,

-i
z)0.05 -0.40z5

1.0 -1.1314z +0.25z - 2

was also used as a source of synthetic data. Feintuch used

(5.6) as a source of data with which to analyze the operation

of his Adaptive Recursive LMS Filter.

B. PHASE LOCKED LOOP DATA

The second class of data used to exercise the Adaptive

ARMA Kalman Identifier was derived from a computer simulated

phase locked loop (PLL) developed by Romeo [Ref. 71. The

basic PLL algorithm, however, implemented a forward Euler

integration scheme.

Briefly, in block diagram form, the phase tracking

characteristics of the PLL in the frequency domain can be

depicted as in Figure 5.2.
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_ sin(-) A KL F (s)

Figure 5.2. PLL Block Diagram

Where:

A is the input voltage

K is the loop gain

F(s) is the filter transfer function

For most applications, it is assumed that ¢P(t) << 7/2 allowing

one to make the approximation, sin a z a This is the

linear mode of operation. Romeo [Ref. 7] chose the filter

characteristics F(s) = 1 + K/S and the same characteristics

were used in this thesis in order to compare results. The

parameters of the overall system were adjusted to obtain

a damping coefficient, , of 0.3 and a natural frequency, wn

of 3.33 rad/sec. This resulted in a step response overshoot

of about 46.7% at t z .75 sec. Solving for the time domain

step response analytically in the linear region one obtains,

y(t) = 1 + 1.048e - t sin(3.178t-l.266) (5.7)

The final block diagram of the PLL system is shown in Figure 5.3.
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U (s) K(s

Figure 5.3. Final PLL Block Diagram

Normalized step responses for several step magnitudes

using Digital Simulation Language (DSL) were obtained. Figure

5.4 shows the step responses of several step inputs in the

range 0 < u(t) < 30. It is obvious that the PLL is in its

approximate linear region and does not exhibit any discernible

distortion. Figure 5.5 is a repeat of the above test; how-

ever, the range of step inputs are 30 < u(t) < 170. It is

apparent from Figure 5.5 that the sin (-) nonlinearity begins

to have some effect on the operation of the PLL in that the

amplitude of the responses are reduced and delayed.

The DSL PLL system, however, was not used as a source of

synthetic data because of the problem of nonstationary statis-

tics of the input signal using the random sequence generators

available under DSL already discussed in Ref. 7. These

simulations were nevertheless used as a basis for comparison

of the operation of the discrete PLL developed in Reference 7

but modified to implement a forward Euler integration scheme

which is used in this thesis.
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2ND ORDER PLL -- TRRPEZOIDRL INTEGRRTION
,NORMRLIZEO STEP RESPONSE .OO1/.O1/.1/1/1O/20/30
C'J

0
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2ND ORDER PLL -- TRPPEZOIORL INTEGRRTION
NORMRLIZED STEP RESPONSE 1/30/60/90/120/150/170

nILI

C"

0

XSCALE- 1.00 UNITS/INCH RUN NO. I
rSCALEz 0.20 UNITS/rNCH PL3T NO. I

Figure 5.5. PLL step Response, Non-Linear Region
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The forward Euler integrator takes the form,

<-> Tz 1
> -1 , T = .01 (5.8)

1l-z

The block diagram of Figure 5.3 changes character to appear

as in Figure 5.6.

U(z) + inKT

Figure 5.6. Discrete PLL Block Diagram

Applying Mason's gain rule to the block diagram of Figure 5.6

in the linear region we arrive at,

Y(z) 0.02z - I - 0.018890z- 2
H H(z) =(5.9)

1 -1.980z + .981110z 2

the linearized PLL transfer function. The discrete PLL sys-

tem has zeros at (0.0,.9445) and a complex conjugate pole

pair at (0.990 ± j.03178).

The discrete PLL system was implemented using a Fortran

program on the IBM 370 in double precision. The source code

for the discrete PLL is included as Appendix C. The discrete
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PLL was tested using various magnitude step inputs. Results

were similar to those from the DSL simulation. That is, the

discrete PLL exhibited the same approximate overshoot, rise

time, natural frequency and nearly identical time of max over-

shoot in the linear region. To implement the PLL using forward

Euler integration, the block diagram of Figure 5.6 was recon-

figured to appear as Figure 5.7. Note that Figure 5.7 does

not employ any delay free loops, hence it is easily programmable.

u (k-1)0,1-.9445z -
-Sin .y(k)

v k-1)- z

Figure 5.7. Programmable PLL Implementing
Forward Euler Integration

Figure 5.8 summarizes the results of the discrete PLL simula-

tion for normalized step inputs in the range 0 < u(t) < 30.

Similarly, the discrete PLL was tested in the nonlinear region

using normalized step inputs in the range 30 < u(t) < 170.

The discrete PLL displayed the same characteristics of de-

creased output amplitude and delay which was first observed

in the DSL simulation. Figure 5.9 summarizes the test results

of the discrete PLL in the nonlinear region.
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Figure 5.9. Discrete PLL Step Response, Nonlinear Region
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It was felt that the PLL was adequately modeled for use

as a source of data to be subsequently analyzed by the Adap-

tive Kalman Identifier.
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VI. MODEL IDENTIFICATION SOFTWARE

Three basic Fortran IV programs for use on the IBM 370

were developed:

(1) ADAPTSN: Adaptive Kalman Identifier

(2) LMS: Adaptive Least Mean Square Filter

(3) LMSR: Adaptive Recursive Least Mean SqczLe Filter

All three programs used double precision arithmetic to minimize

the effects of truncation error, limit cycles and roundoff

error. In all cases the orders of the autoregressive and

moving average processes were read in unformatted form from

a disk file along with the input/output data of the unknown

system to be analyzed. An attempt was made to minimize memory

storage, but not at the expense of program flow and clarity.

A. ADAPTIVE KALMAN IDENTIFIER

Program ADAPTSN is a versatile Fortran IV software program

which implements equations (2.15) to identify the coefficients

of an MA, AR, or ARMA process. Additionally, at each iteration

the poles and zeros of the evolving transfer function are com-

puted. ADAPTSN can also be used to perform regression analysis

on non-linear terms as discussed in Chapter VII. The versa-

tility of the AKI lies in the various options which are avail-

able to the user. By properly selecting the flags N, M, and

NL, the user can perform regression analysis on data whose

combined order (N+M+l) is less than or equal to 20. Table 6.1

lists the ascribed meanings of the various flags.
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Table 6.1

AKI FLAG MEANINGS

N: the order of the autoregressive process

M: one greater than the order of the moving average
process

NL = 0: AKI is used to identify the coefficients associated
with the general ARMA equation (2.1b) (linear
regression)

NL = 1: AKI is used to identify the coefficients of the
linear general ARMA equation Ind the weighting
coefficient associated with u (k-i)

NL = 2: AKI is used as in NL = 0,1 and additionally iden-
tifies the weighting coefficient associated with
y 3 (k-i)

NL = 3: AKI is used as in NL = 0,1,2 and additionally iden-
tifies the weighting coefficient associated with
u 2 (k-i) y (k-i)

NL = 4: AKI is used as in NL = 0,1,2,3, and additionally
identifies the weighting coefficient associated with
y 2 (i-i) u (k-i)

NL = 5: AKI is implemented to analyze time series and
identify the ARMA coefficients associated with
the Box-Jenkins model [Ref. 261.

The option given by NL = 5 was not extensively tested and as

such only limited results are available. Table 6.2 outlines

the allowable flag combinations which will produce a valid

analysis of the data.

For purposes of this thesis, the non-linear (NL) options

were configured to implement the expansion terms associated

with the Taylor series expansion of the sine function. This,

however, can be changed at the user's discretion to implement

any other series expansion by inserting the appropriate Fortran

statements at the proper location in the AKI program.
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Table 6.2

VALID FLAG COMBINATIONS

OPTION (NL) MAX COMBINED ORDER

0 N + M < 20

1 N + 2M < 20; N,M 0

2 2N + 2M < 20; N,M # 0

3 3N + 2M < 20; N,M # 0

4 4N + 2M < 20; N,M 0

5 N + M< 20

The overall structure of the AKI program uses subroutine

calls to compute the various quantities necessary for the

eventual computation of the system ARMA coefficients. These

subroutines are: GAIN, RECKON, PRINT, NEXT. A brief des-

cription of the function each performs is given at the

beginning of each subroutine. Figure 6.1 describes the

general program flow of the AKI. The source code for program

ADAPTSN is included as Appendix D.

B. ADAPTIVE LEAST MEAN SQUARE FILTER

Program LMS uses the equations developed in Chapter III

to compute the coefficients (or weights) associated with a

moving average process. The LMS filter program is capable of

computing up to 12 MA coefficients; or equivalently, is capable

of identifying an eleventh order moving average process. The

general program flow of the LMS filter is presented in

Figure 6.2 and the annotated source code is included as Appen-

dix E.
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Figure 6.2. LMS Filter Program Flow
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C. ADAPTIVE RECURSIVE LEAST MEAN SQUARE FILTER

Program LMSR realizes the algorithm proposed by Feintuch

and recapped in Chapter IV. It was designed to handle a

combined AR and MA order of 11. That is, the program can be

used to estimate m + 1 = M coefficients associated with the

MA process and n = N coefficients associated with the AR

process such that N + M < 12. The general program flow for

the Adaptive Recursive LMS filter is shown in Figure 6.3 and

the source code is included as Appendix F.
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VII. NON-LINEAR IDENTIFICATION

The Adaptive Kalman Identifier can be modified to estimate

the weighting coefficients associated with higher order terms

produced by some non-linearity within the unknown system. In

general, much has to be known about the non-linearity such

that the functional description chosen for it is a close

approximation to the effects it causes. In this thesis one

possible application of the Adaptive Kalman Identifier toward

identifying a system with a known non-linearity is explored.

No attempt has been made to present an extensive treatment of

non-linear analysis techniques.

The approach taken has been previously explored by Parker

[Ref. 81. A special case of the generalized non-linear ARMA

model [Ref. 81,

y(k) = [ a(i1 )u(k-i1 ) + a(il,i 2 )u(k-i1 )u(k-i2) +...
i1 =0 i1=0 i2=0

+ .. a(il .. im)u(k-i I ) .. u(k-i m )
if1=0 i m=0 1'...

+ I b(jl)y(k-j I ) + I b(JlJ 2 )Y(k-jl)y(k-92 ) +
j l =1 jl = l i 2 = 1 l

+ ... 7 b(JlJ 2 ,. .. ,j )yl)yn(k-92) .. y(k-J n )

iyI

.yn

=

-
00 00 00 CO 00

+ I I c(iljl)u(k-il)y(k-j) +... + m ... Z Iii=0 jlj 1 1il1=0 i =0 Jl1=1

•... in C(il, ... i ml -... Jn) U(k-i I ) ... u(k-im)Y(k-j I ) ... y(k-Jin)

(7.1)
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is used to model the input/output relationships, non-linear

transfer function, of the phase locked loop. The non-linear

element, the sine function, of the PLL can be replaced by

a Taylor power series expansion,

sin(x) = x - x 3 +-1 .-x - ... (7.2)3! 5!

Other expansions can be used, e.g., Legendre polynomials,

Volterra series, ..., etc.; however, only the Taylor expan-

sion was investigated in this thesis. Practical implementa-

tion of (7.2) suggests truncation at the third order term.

The sine function is therefore approximated as

sin(x) = x---x. (7.3)

Substituting (7.3) into the block diagram of Figure (5.6) we

have Figure 7.1.

z-E (z) z-E2 (Z)

zk u (Z) + .)31 3 .01-.9445z-1l

l+2z-l+z-21

*1

Figure 7.1. PLL, Third Order Taylor Series
Approximation
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The discrete time domain equations at the different nodes are:

e 1 (k-1) = u(k-1) -y(k-l) (7.4a)

e(k-1) = e1 (k-1) - -L- e 3 (k-i) (7.4b)

y(k) =.02e (k-1) -. 01889e (k-2) + 2.Oy(k-1)
22

-y(k-2) (7.4c)

* Manipulating equations (7.4a)-(7.4c) gives

y(k) .02u(k-1) - .01889u(k-2) + i.98y(k-i) - .98111y(k-2)

-. 003333u 3(k-1) + .003148333u 3 (k-2)

+ .003333y 3 (k-1) - .003148333y 3 (k-2) (7.5)

+ Ol1u 2 (k-l)y(k-1) - .09445u 2(k-2)y(k-2)

- Olu(k-l)y 2(k-i) +.09445u(k-2)y 2(k-2).

Equation (7.5) indicates which non-linear terms of

equation (7.1) should be retained. Therefore, the third

order non-linear approximation model should contain the

following terms:

u~-1, u~-2), y(k-l), y(k-2) linear terms (7.6a)

3 3u (k-1), u (k-2) input cubic terms (7.6b)

y 3 (k-1), y 3(k-2) output cubic terms (7.6c)
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u 2(k-l)y(k-l), u 2(k-2y(k-2) third order cross (7.6d)

y(k-l)u(k-l) , y 2 (k-2)u(k-2) j product terms (.d

The AKI algorithm is primarily modified to include the

hybrid signals (7.6) in the structure of H(k), the measure-

ment vector. Since now the measurement vector, H(k) takes

the form,

H(k) - [u(k) ... u(k-m),-y(k-l) ... -y(k-n),u 3(k) ...
_3 3n,( klykl)-

.. u (k-mn),-y3(k-1) .. y (k-n -u (-~ -) .

...- (u2 (k-n)y(k-n)), (u(k-)y 2 (k-1)) ... (u(k-n)y 2 (k-n))]

(7.7)

the AKI algorithm calculates the coefficients associated with

the special case of the generalized non-linear ARPA model,

equation (7. 1)

Romeo using a similar approach [Ref. 71 computes a least

squares curve fit for the third order truncation of the

Taylor series for the sine function over the interval

(0,7r/2). Beginning with the approximation,

sin(x) z ax + x3  (7.8)

Romeo finds the values for a and 8 to be .865 and -.095

respectively. Performing the same operations as those used

in obtaining equation (7.5) we arrive at,
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y(k) = .02au (k-1)-.01889au(k-2) + (2.0- .02a)y(k-1)

+ (.01889a -l)y(k-2) - .02U 3 (k-l) +.01889au 3 (k-2)

- 3 2 .O~ 3 (k)- .01889y (k-2) + .068u (k-l)y(k-l) + .02 y (k-1)

- .0566708u 2 (k-2)y(k-2) - .06ay 2 (k-l)u(k-l)

+ .056670y 2 (k-2)u (k-2) (7.9)

Table 7.1 tabulates the resulting weighting coefficients

using the three methods just described: (1) analytically

calculated values using the truncated Taylor series, (2) least

squares estimate of the third order sine approximation, as

computed by Romeo (Ref. 71 and (3) the coefficient estimates

as computed using the AKI algorithm.

The tabulation clearly shows that the AKI outperforms

the first two methods overall. That is, the linear terms

were identified without question; however, the AKI failed
y3

to identify the coefficients associated with the y (i-l),3 u2 2

y (k-2), u (k-2) y(k-2) and y 2(k-2) u(k-2) terms. The reason

for the failure is not known and was not investigated.
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Table 7. 1

NON-LINEAR WEIGHTING COEFFICIENTS CALCULATED
USING THREE METHODS

(1)(2) (3)

TAYWDR SEIS L4EAST SQUARES EJT. AKI LZflNG ACTUAL

sin (x) x -31 3 sin (x) = ax + x sin(x) data base
X-7 i a = .865, S-.095

y (k-1) 1.98 1.982700 1.980

y (k-2) -. 98111 -.98366015 -. 9815

*u(k) 0.0 0.0 .00003691

u(k-1) 0.2 .01730000 .02003

u(k-2) -.01889 -.01633985 - .01892
3u (k) 0.0 0.0 .00001471

u 3(k-1) -. 003333 .00190 - .003278
3u (k-2) .003148333 -.00179455 .003032
3y (k-1) .003333 -. 00190 -. 05695
3

y (k-2) -. 003148333 .00179455 .05799
u (k-1)y(k-1) .01 -.005700 .01032

u 2 (k-2)y(k-2) -. 09445 .00538365 - .009610
2y (k-1)y(k-1) -. 01 .005700 -. 01640

y 2(k-2)u(k-2) .09445 -.00538365 .01913
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VIII. FINDINGS AND CONCLUSION

The performance of the Adaptive Kalman Identifier was

compared to the LMS Adaptive Filter and the Adaptive Recur-

sive LMS Filter using data derived from the models discussed

in Chapter V. Results for the case where the order of the

model (that is, m and n of equation (2.1b)) are assumed

known are presented first followed by the analysis of the

PLL data. The findings for the overmodeled case are presented

next. The graphs show typical runs and do not represent

ensemble averages.

A. ORDER OF THE UNKNOWN SYSTEM IS KNOWN

1. AKI vs. LMS Adaptive Filter

Using the MA form of the Adaptive Kalman Identifier,

its performance can be compared against that of the LMS

adaptive filter. Synthetic data derived from a plant whose

transfer function is,

H(z) = 1.0 + 2.0z -  + 3.0z - 2  (8.1)

was used. However, a fair comparison necessitated that the

LMS Adaptive filter be "tuned" by adjustment of the conver-

gence factor, k . Several values for k s in the range [-.600,

-.2001 were used. The objective of tuning the LMS filter was

to achieve a fast convergence time with little or no steady

state error while not compromising filter stability. The

three filter weights were normalized and plotted for five
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convergence factor values. It can be seen from Figures 8.1-

8.3 that convergence is essentially reached by step thirty-

five, (k z 35). As the convergence factor is further in-

creased it can be noted in Figure 8.4 that the filter weights

become more noisy, and that when ks = -.600, filter stability

is being compromised (Figure 8.5a).

Using the same data, the AKI converges to the MA coeffi-

cients in less than five iterations. Referring to Figure

8.5b, it was also noted that as the measurement noise v(k)

was increased, the LMS algorithm yielded more noisy estimates

whereas the AKI tended to compensate for measurement noise.

This is intuitively reasonable since the AKI incorporates

into its algorithm the effects of measurement error due to

noisy sensors. Comparing Figure 8.6 with Figure 8.7 the

latter figure clearly shows the faster convergence of the AKI

to the plant coefficient.

It was shown in Chapter III that the AKI gains would

approach a steady state value and indeed they did, as Figure

8.8 shows. However, the instantaneous Kalman gains display

a more erratic pattern as shown in Figure 8.9. The informa-

tion of Figure 8.8 was gleaned from Figure 8.9 by computing

the average of the individual gains at each iteration using

the algorithm,

E G(k+l)} = E{G(k)} + ([G(k) -E{G(k)}] (8.2)

E G(k+l)} is the one step prediction of the
average value for the gains,
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E{G(k)} is the present average value for the gain

G(k) is the present value of the instantaneous
gains

is the averaging gain.k+l

This method of obtaining a "running" average is generally

well known, (see for example Ref. 39). The example presented

was not the only one used but a good representative of the

operation of the AKI when the data was derived from a moving

average process.

2. AKI Applied to Autoregressive Data

Before applying the AKI to identifying the coefficients

of a complex ARMA plant, it was first tested using data

derived from a plant whose transfer function specified an

autoregressive process. The transfer function used was,

H(z) 26.0 -1 9.0 -2 1.0 -31. 0 + 2-. 0z + 2-.0 z  + 2-4.0 z

a0
-1 -2 3 (8.3)

The AKI had no problem converging on the plant coefficients

(Figure 8.10) producing the following estimates at the 4 2nd

iteration (Table 8.1). It essentially converged on the plant

coefficients in approximately five iterations. The gains

computed by the AKI for this case also displayed convergence

to a steady state value. The gain history for this example

is depicted in Figure 8.11.
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Table 8.1

ACTUAL VS AKI ESTIMATES FOR COEFFICIENTS OF EQUATION 8.3

ACTUAL AKI ESTIMATES

a 0  1.0 0.9995

bI -1.08333 ... -1.083

b2 -0.3750 -0.3756

b -0.04166 ... -0.04212

3. AKI Applied to ARMA Data

The next logical step was to use the AKI to identify

the coefficients of a general ARMA process. One of Perry's

models [Ref. 61 was used for this purpose. Specifically, the

transfer function of the plant was,

H(z) - 1.0 + 1.4z 
1  + .98z 2

1 -l.14z - I +1.4549z - 2 - .88490z- 3 + .40745z- 4

-i -2
a0 + az + aZ2

-1 - 12 - 3 - 4 (8.4)

1-b1 Z b2 - b 3  -b 4z

The ARMA plant was subjected to the same conditions which

Perry (Ref. 61 describes. That is, unit variance, zero mean,

white gaussian noise was used as the input. The reader is

reminded that the output signal processed by the AKI was cor-

rupted by measurement noise as described in Chapter V. The

output data used in Perry's examples, however, reflects noise-

less measurements. Table 8.2 tabulates the results for the

coefficient estimates computed by the AKI. Even though the

results presented in Table 8.2 represent the coefficient
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Table 8.2

ACTUAL VS AKI ESTIMATES FOR COEFFICIENTS OF EQUATION
8.4 AT THE 371ST ITERATION

ACTUAL AKI ESTIMATES

a0  1.00000 0.98760

aI  1.40000 1.40100

a2 0.98000 0.99280

a3 0.00000 0.01252

a4 0.00000 -0.00922

b 1.14000 1.14000

b2  -1.45490 -1.45900

b3  0.88490 .88740

b4  -0.40745 -.40980

estimates at the 3 7 1st iteration, it can be seen from Figure

8.12 that the AKI has essentially converged by the 2 8th

iteration. We note also the characteristic convergence of

the averaged gains to steady state values in Figure 8.13.

As a means of comparison with Perry's results, the poles and

zeros of the AKI estimates at the 28th 9 0th and 3 7 1
s t itera-

tion are plotted in Figure 8.14a and Figure 8.14b. Perry's

results Figure 3.7 [Ref. 6:pp. 107,1081 for his lattice

modeling of the plant represented by equation (8.4) are

reproduced for convenience.

As was noted for the previous cases, the instantaneous

gains appeared erratic, Figure 8.15, whereas the averaged

gains converged to some steady state value.
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Figure 8.14a. Pole/Zero Models Produced by AKI and
Lattice Algorithms for a Plant with the
Characteristic Transfer Function of Eqn. (8.4)
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Figure 8.15. Instantaneous Gain Values, AKI(4,5) Model

4. AKI vs Adaptive Recursive LMS Filter

Using Feintuch's proposed algorithm [Ref. 181 and

repeating the simulation presented in the rebuttal to Johnson

and Larimore (Ref. 191, a comparison was made between the

operation of the AKI and the Adaptive Recursive LMS filter.

The Adaptive Recursive LMLS filter required "tuning" of the

convergence factors, ka and kb to what appeared to be the

optimal performance features of (1) fast convergence and
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(2) stable estimates. The "tuning" process was a trial and

error procedure beginning with the convergence constants

given by Feintuch,

k = -4.3 x 10 - 4  (8.5a)a

kb = -4.3 x 10 4 . (8.5b)

The Adaptive Recursive LMS algorithm was then implemented

to estimate the coefficients of the plant whose transfer

function was,

H =z 0.05 - 0.40z(.

=z) 1 - 1.1314z - + 0.25z 2  (8.6a)
a + a -i
0  1 (8.6b)

1 - blZ-1 - b2z

The best response obtained by trial and error resulted in

the convergence constants,

k = -4.3 x 10 - 3  (8.7a)

k = -14.3 x 10 - 3 . (8.7b)

Feintuch reported that after 8,1922 iterations the estimates

had converged on the coefficients of (8.6a) with a .2096

normalized rms error. Using the convergence constants (8.7)

thconvergence was essentially reached by the 4,000 iteration.

2Feintuch reports the resulting estimates for the coeffi-
cients at several intermediate iterations from 8,192 to 65,536,
however 8,192 was the minimum number of iterations reported.
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It was felt that the operation of the adequately tuned

Adaptive Recursive LMS filter could be fairly compared with

the operation of the AKI.

Table 8.3 tabulates the performance of the two system

identification methods and Figures 8.16 and 8.17 graphically

present the responses. Figure 8.18 not only shows at what

point the gains of the AKI reach a constant value but also

Table 8.3

ACTUAL VS AKI AND ADAPTIVE RECURSIVE LMS FILTER

ESTIMATES FOR COEFFICIENTS OF EQUATION 8.6

ACTUAL AKI ESTIMATES (k = 150) ADAPTIVE RECURSIVE
LMS (k = 3,990)

a 0.05 0.05107 0.05045

a1  -0.40 -0.4007 -0.3990

b 1.1314 1.13200 1.12800

b -0.25 -0.25090 -0.2442

provides a measure of confidence that the unknown system has

been identified. It is evident from Figure 8.19 that both

methods seem to identify the poles and zeros of the actual

plant; however, the poles computed by the AKI are closer.

The zeros computed by the AKI are approximately .080 units

farther from the true zero than is the Adaptive Recursive

LMS filter estimate. All aspects considered, the AKI takes

considerably fewer iterations to arrive at its estimate.
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5. AKI Applied to PLL Data (Linear Region)

To identify the coefficients associated with the

general autoregressive-moving average representation for the

phase locked loop, the input noise signal power (mean square

2value) was kept at (10 deg)2. In this manner, the linear

region of the PLL was invoked. The input/output data was

analyzed by the AKI resulting in the estimates shown in

Table 8.4. Figures 8.20 and 8.21 show the responseof the AKI

Table 8.4

ACTUAL VS AKI ESTIMATES OF THE ARMA
REPRESENTATION FOR THE PLL (LINEAR REGION)

ACTUAL AK ESTIMATES (k = 82) AKI ESTIMATES (k = 350)

a0  0.000000 -0.0001046 -0.000692

a 0.020000 0.0198500 0.0199800

a2 -0.018890 -0.018720 -0.0188900

b 1.980000 1.980000 1.978000

b2 -0.981110 -0.981000 -0.9790

when applied to the identification of the PLL data. It was

noted that though the AKI correctly identified the coeffi-

cients of the linear PLL, the AKI gains were large due to

the weak signals (input/output data) incorporated in the

measurement vector, H(k).

6. AKI Applied to PLL Data (Non-linear Region)

When analyzing any non-linear system the engineer

must bring to bear all his analysis techniques on the problem.

The PLL was therefore studied using classical root locus
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techniques to preview the possible outcomes when being modeled

by the AKI. Stability analysis of a more complex PLL system

using the root locus technique has been previously presented

in the literature (Ref. 40].

The root locus technique can be applied to the PLL

presented in this thesis by first assuming that the sin(-)

block of Figure 5.7 is a variable gain, X. This is not a

restrictive assumption since the PLL during operation generally

tracks small deviations. The loop gain can be written by

inspection as,

(1 - - 1

X(.02) (z - .9445)z

(z -1)2

From equation (8.8) the root locus of L(z) is drawn as shown

in Figure 8.22. Even though the root locus technique is

generally used when the signals in the system are considered

deterministic, it is not surprising that some of the results

obtained are nevertheless valid. When a moderately strong

input noise identification signal [E{u 2(u)} < (25 deg) 2] was

used, the pole-zero locations of the PLL seem to follow the

classical root locus analysis. However, when the input noise
2

identification signal power is increased beyond (25 deg)

the pole-zero locations do not follow the expected behavior

predicted using the root locus method as can be seen in

Figure 8.22.
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The departure of the pole-zero behavior from what was

expected was analyzed by closer investigation of the linear

terms of equation (7.8).

y(k) = .02au(k-l) - .01889cLu(k-2) + (2.0 -. 02a)y(k-l)
fin

+ (. 0 1889a -l)y(k-2) (8.9)

Recalling that a third order Taylor series approximation of

the sine is the functional expressed by equation (7.7),

sin(x) z ax + ax3  (7.7)

one notes that the linear region is described when a = 1 and

3 =0. It is therefore reasonable to study the variation of

a with respect to input noise power.

The average value a of a, was computed by equating

the estimated AKI coefficients to the coefficients of like

terms in equation (8.9) for several input noise power levels.

The relation used was

- 2.0 -b 1  1.0 +b 2  a1  a 2=CL .02 + .01889 + .02 .01889]  (8.10)

at the 350th iteration. The relationship between a and the

input noise power level is readily apparent from Figure 8.23.

This result is plausible since if one considers the input-

output relationship of the sine block of Figure 5.7 one obtains

Figure 8.24. Superimposing the gaussian probability functions

of the different input noise signals, it can be seen that for

107



cL

20

18

16

14

12

10

8

6

4

a =1 (linear cperation)

102 202 302 402 502 602 70 2 de2

Figure 8.23. Variation of a vs Input Noise Signal Power

108



low power levels of the input signal, identification of the

linear parameters of the overall system (equation 5.9) can

be made. As the input power is increased beyond (25 deg) 2

the input-output characteristics of the sin x block are no

longer approximately linear, showing its effect in Figure 8.24

as a departure from its linear operation, a = 1. Therefore,

by monitoring a one can determine when the overall system is

entering its non-linear operating regime.

Since the same functional dependence between each of

the AKI estimates and a did not exist for all of the input

noise powers considered, knowing c did not provide any infor-

mation of the pole locations but did provide a measure of the

degree of non-linear operation.

B. ORDER OF THE UNKNOWN SYSTEM IS NOT KNOWN (OVERMODELING)

1. AKI vs LMS Adaptive Filter

Using the data derived by operating a plant with the

transfer characteristic of equation (8.1) the operation of

the AKI and the LMS adaptive filter was compared when the

orders used in the identifier and the LMS filter were greater

than the known process that generated it. The following

overmodeling cases were studied:

(1) MA model is greater than plant MA process

(2) ARMA model is fitted to MA plant

When the MA model order is greater than that of the

plant MA process, it was found that both the AKI and the LMS

filter would compute coefficients close to zero for the higher
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order coefficients. This effect can be seen in Figures 8.25a

and 8.25b when a fourth order MA process is used to model the

actual second order process represented by equation (8.1).

Since these are a "zeros only" plant and model the over-

modeling essentially causes zeros to appear at the origin of

the Z-plane of the model transfer function. Table 8.5 sum-

marizes the results for two overmodeling conditions at the 250th

iteration using the AKI. When a purely moving average process

represented by equation (8.1) was modeled as an ARMA process,

one must direct his attention to the poles and zeros of the

model transfer function which the AKI computed and compare

them to the actual plant poles and zeros. It was not readily

apparent from the resulting coefficients that the plant had

been identified. The following example will help clarify

what is happening.

For the data produced by the second order plant

(equation 8.1), an autoregressive moving average (ARMA) model

of orders 2 and 5 respectively was fitted. It can be seen

from Table 8.6 that no firm conclusions can be drawn about which

coefficients actually identify the plant. We, the analysts,

knowing the form of the plant which produced the data, could

qualitatively state that b., b2, a3 , a4 and a5 are small

enough to be ignored. Hence, we can identify the plant cor-

rectly. However, inspection of the poles and zeros of the

transfer function which the AKI computed,
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Table 8.5

OVERMODELING OF A MA PROCESS USING THE AKI (k = 250)

Actual Model 3rd Order AKI 5th Order AKI

Coeffs MA Model MA Model

a0  1.0 .9995 .9991

a, 2.0 2.0000 2.000

a2  3.0 3.0000 3.000

0.0 .893 x 10 .0003191

a4  0.0 .001082

a5  0.0 -- .0003198

zeros: -1.0 t 1.414j -1.000 t 1.414j -1.001 ±1.414j

.2977 x 10 -  .0227 t .0428j

-.4534

Table 8.6

OVERMODELING OF A MA PROCESS USING THE AKI OF ORDERS
AR = 2, MIA= 6

Actual Plant Coefficients AKI (2,6) Model Coefficients

b 0.0 .00467

b2  0.0 .10500

a0  1.0 1.0000

a1  2.0 1.9940

a 2  3.0 2.8840

0.0 -0.2257

a4  0.0 -0.3142

0.0 0.0001517
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1.0 + 1.994z -1 + 2.8840z - 2 0.2257z-3

H - 0.3142z
- 4 + 0.001517z

- 5

HAKI (2,6) (z) -2-
1 - .00467z - .1050z 2

(8.11)

results in:

poles: -.8217

.3264

zeros: -.9996 ± 1.414j

.4827 x 10

-.3212

.3262

The observation to be made is that there are two pole-zero

combinations which are near cancellation. This suggests that

the AKI algorithm be rerun with the AR and MA orders reduced

by at least two.

The implication of the analysis of this section is

that a model can in theory be found for a given set of input/

output data. Further, a parsimonious model can be identified
by careful observation of pole-zero combinations which are

near cancellation and of stray zeros near the origin.

2. AKI Applied to AR and ARMA Data

Essentially the same characteristic results found in

Section VIII.B.l were confirmed when the data produced by

plants defined by the transfer functions of equations (8.3)

and (8.4) were analyzed by the overmodeled AKI. That is,

pole-zero pairs near cancellation and zeros near the origin

114



were produced by the AKI. Figures 8.26 through 8.28 have

been chosen as representative pole-zero plots of the transfer

functions computed by the AKI for the AR plant of Section

VIII.A.2 and for Perry's model (Section VIII.A.3).

C. CONCLUSION

This work indicates that the Kalman filter algorithm

heretofore generally used as a state estimator, or in augmented

form to estimate parameters (in which case the parameters

are treated as states), can also be formulated in an adaptive

manner to iteratively estimate the coefficients of an ARMA

equation explicitly. This approach, termed the Adaptive

Kalman Identifier (AKI), summarily identifies the unknown

system whose input/output data is being processed. The LMS

adaptive algorithm of Widrow, and its modification by Griffiths

(in which the convergence factor is selected to be inversely

proportional to the input signal power) are shown to be sub-

optimal cases of the AKI. An additional insight provided by

the AKI is that it indicates clearly how measurement noise

might be taken into account in the LMS adaptive formulation.

The operation of the AKI was checked by way of simulation

and compared with two existing identification techniques:

(1) the LMS Adaptive nonrecursive (MIA) algorithm and (2) the

Adaptive Recursive ARMA LMS algorithm. It was found that not

only are the two LMS filtering techniques special suboptimal

cases of the AKI; but, further, the AKI exhibits superior

convergence and modeling properties for the cases where (1) the
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order of the unknown plant is known and (2) the order of the

plant is overmodeled. Additionally, the simulations indicate

that accuracies similar to those obtained using lattice

modeling methods, can be achieved using the AKI at a decidedly

smaller number of iterations.

By making minor modifications to the measurement vector,

H(k), that is by using hybrid signals, the AKI was used to

identify the linear and non-linear ARMA representations of a

phase locked loop with success. Interestingly, the AKI tech-

nique appears to enable one to discern when a potential non-

linear system enters its non-linear mode of operation, by

closely monitoring the coefficients of the linear portion of

the generalized non-linear ARMA model.

D. TOPICS FOR FURTHER CONSIDERATION

Several areas for further study directly and indirectly

related to the AKI were uncovered. Foremost, a rigorous

convergence proof is desirable. Although the connection was

made between the AKI algorithm and the initial equation from

which the lattice modeling algorithm is developed, similar

comparisons (such as Chapters III and IV) could provide more

insight into the operation of both. The multichannel AKI is

the logical development of the single channel AKI presented.

And, lastly, refinement of the AKI software (using the NL = 5

option) to include ARMA modeling of time series using a Box-

Jenkins approach [Ref. 261 is feasible. A limited number of

simulations using Monterey rain data and series C [Ref. 261
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data seem to indicate that an application exists for the A-KI

in this area.
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APPENDIX A

THE DISCRETE WEINER PROBLEM

The discrete Weiner problem considers optimally filtering

a desired signal from unwanted stationary noise. The cri-

terion of optimality used is minimization of the mean squared

error between the output and the desired signal. Generally

one desires that the optimal filter, which is the device

being sought, be time invariant and that it be able to accept

a signal, s(k), and noise, n(k), where each are samples from

stationary random processes. In other words, we want a

device which can accept

x(k) = s(k) + n(k) (A.1)

as an input and produce at its output s(k+A) or some linear

function thereof where A is some known delay.

Assuming that the desired output, d(k), is the response

to a specified sampled data linear system whose transfer

function, Hd(z), is given, then the error between the desired

output and the output of the filter, y(k), we seek is,

e(k) d(k) - y(k). (A.2)

Figure A.1 depicts the discrete Weiner problem formulation.

The derivation from here follows the one presented by Maybeck

[Ref. 27] for the continuous case. From the block diagram

we have,
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Figure A.l. The Discrete Weiner Problem

y (k) h h(k-i) x (i) (A. 3)

or equivalently,

y(k) = x(k-i) h f(i) (A.4)

Substituting equation A.4 into A.2 and squaring we have,

2 2 0
e (k) =d (k) - 2d(k) I hf(i) x(k-i)

i=-00

(A.5)

p + Z x(i)h f(k-i)][ I x(i)h f(k-i)]
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Taking the expected value of A.5 we obtain,

Efe2(k)} = dd(0) - 2 [ hf(i)Idx (i)
i=-00

(A.6)

+ [ hf(i) I hf(k) Pxx(k-i)
i f- i=-.

where notation p uv(m) denotes the expected value of the

product of u (k) and v(k+m) . That is,

Iuv (m) = E{u(k)v(k+m)} = E{u(k)v(k-m)} (A.7)

otherwise known as the autocorrelation of u(k) and v(k).

Using variational techniques and letting,

h f(i) = h opt(i) + sAh(i) (A.8)

substituting equation A.8 into equation A.6, taking the

partial derivative with respect to epsilon, e, and setting

the partial derivative equal to zero we have:

00 00So(n) h (i)xx(n-i) -x xdn)] 0 (A.9)

n-o i=-.o opt x

The term within the brackets is the discrete form of the

Weiner-Hopf equation and must be equal to zero if equation A.9

is to be valid since Ah(n) > 0 by definition. Therefore,

00

I- hopt (iW xx(n-i) = xd(n) (A.10)
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Equation A.lO is the most often encountered in truncated form

in linear prediction theory, Pade approximation, adaptive

filtering and lattice filtering. The truncated version of

A.1O which is generally used in solving the discrete Weiner

problem is,

M
I h (i)ip (n-i) = xd (n) (A.11)i=0 opt x d

or in matrix form,

"Pxx (0) 'Pxx (-l) ... Pxx (-n) hopt (0) "xd (0)

xx(1) 'xx(0) •.. 'xx (1-n) h opt(l) 'xd (I )

*. ... (A.12)

'P (n) xx (n-l) .. xx (0) hop t (n)d (n)
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